https://www.w3schools.com/python/default.asp

alirezalOrezaeilD@gmail.com

print("Hello, World!™)

Python Indentation(wz Couw 3l duols)
Indentation refers to the spaces at the beginning of a code line.

Where in other programming languages the indentation in code is for
readability only, the indentation in Python is very important.

Python uses indentation to indicate a block of code.

Example

if 5 > 2:
print("Five is greater than two!")

Python will give you an Bl if you skip the indentation:

Example
Syntax Error:

if 5 > 2:
print("Five is greater than two!")

The number of spaces is up to you as a programmer, but it has to be at least
one.

Example

if 5 > 2:
print("Five is greater than two!")
if 5 > 2:

print("Five is greater than two!")

https://www.w3schools.com/python/default.asp
mailto:alireza10rezaei10@gmail.com

You have to use the same number of spaces in the same block of code,
otherwise Python will give you an error:

Example

Syntax Error:

if 5 > 2:
print("Five is greater than two!")
print("Five is greater than two!")

If you try to combine a string and a number, Python will give you an EHEOR:
Example
X =5

_ "John"

y =
print(x + y) EEENCHCRRON

il i eh (8597
print(x , y)
\' Single Quote S s b Ky yiul 555 5l

\n New Line

Python Membership Operators

Membership operators are used to test if a sequence is presented in an
object:

Operator Description Example

in Returns True if a sequence with the specified X iny
value is present in the object

not in Returns True if a sequence with the specified x notiny
value is not present in the object

Python If ... Else

Python Conditions and If statements

An "if statement" is written by using the if keyword.

Example

If statement:

a 33
b 200
if b > a:
print("b is greater than a")

Indentation

Python relies on indentation (whitespace at the beginning of a line) to define
scope in the code. Other programming languages often use curly-brackets for
this purpose.

https://www.w3schools.com/python/trypython.asp?filename=demo_oper_membership1
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_membership1

Example
If statement, without indentation ((NillCISCIGNNCIIOR) :

a = 33
b = 200
if b > a:

print("b is greater than a") LEVIRTERNEE-I-3a-ToRN-Togle]y

Else

The else keyword catches anything which isn't caught by the preceding
conditions.

Example

b =33
if b > a:

print("b is greater than a")
elif a ==

print("a and b are equal")
else:

print("a is greater than b")

And

The and keyword is a logical operator, and is used to combine conditional
statements:

Example

Test if a is greater than b, AND if c is greater than a:

a 200
b =33
C 500

if a > b and ¢ > a:
print("Both conditions are True")

Or

The or keyword is a logical operator, and is used to combine conditional
statements:

Example
Test if a is greater than b, OR if a is greater than c:

ifa>bora>c:
print("At least one of the conditions is True")

Nested If

You can have if statements inside if statements, this is
called nested if statements.

Example

X = 41
if x > 10:
print("Above ten,")
if x > 20:
print("and also above 20!")

else:
print("but not above 20.")

Python While Loops
The while Loop

With the while loop we can execute a set of statements as long as a
condition is true.

Example

Print i as long as i is less than 6:

i=1

while i < 6:
print(i)
i=1+1

The break Statement

With the break statement we can stop the loop even if the while condition is
true:

Example

Exit the loop when iis 3: (usow e 4dls) 3S)

i=1
while i < 6:
print(i)
if i ==
break
i+4+=1

The continue Statement

With the continue statement we can stop the current iteration, and continue
with the next:

Example

Continue to the next iteration if i is 3:

&)ﬁ})ﬂhdﬁ@u)d&\w%}‘)ﬂhhﬁd}\)\bJﬁ}}bM})&M‘J‘&J@}ﬁ\&‘)
(45

i=20
while i < 6:
i+=1
if i ==
continue
print(i)

Python Functions

Creating a Function

In Python a function is defined using the def keyword:

Example

def my_ function():
print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my_function():
print("Hello from a function")

my_function()

Arguments

Information can be passed into functions as arguments.

Arguments are specified after the function name, inside the parentheses. You
can add as many arguments as you want, just separate them with a comma.

The following example has a function with one argument (fname). When the
function is called, we pass along a first name, which is used inside the
function to print the full name:

Example

def my_function(fname):
print(fname + " Refsnes")

my_function("Emil™)
my_function("Tobias™")
my_function("Linus™)

def my_ function(fname, lname):
print(fname + " " + lname)

my function("Emil", "Refsnes")

Return Values

To let a function return a value, use the return statement:

Example

def my_function(x):
return 5 * x

print(my_function(3))

print(my_function(5))
print(my_function(9))

Python Variables

In Python, variables are created when you assign a value to it:

Example

Variables in Python:

X =5
y "Hello, World!"

Variables do not need to be declared with any particular type, and can even
change type after they have been set.

Example

4 # x is of type int
"Sally" # x is now of type str

X
X

O e Al b Lad 4y 95 5 poite 0

#Illegal variable names: (W Lwie gl n Jae pe alal)

2myvar = "John"
my-var = "John"
my var = "John"

Python Scope

A variable is only available from inside the region it is created. This is
called scope.

Local Scope

A variable created inside a function belongs to the /ocal scope of that
function, and can only be used inside that function.

Example

A variable created inside a function is available inside that function:

def myfunc():
X = 300
print(x)

myfunc()

Function Inside Function

As explained in the example above, the variable x is not available outside the
function, but it is available for any function inside the function:

Example

The local variable can be accessed from a function within the function:

def myfunc():
X = 300
def myinnerfunc():
print(x)
myinnerfunc()

myfunc()

Global Scope

A variable created in the main body of the Python code is a global variable
and belongs to the global scope.

Global variables are available from within any scope, global and local.

Example

A variable created outside of a function is global and can be used by anyone:

X = 300

def myfunc():
print(x)

myfunc()

print(x)

Naming Variables

If you operate with the same variable name inside and outside of a function,
Python will treat them as two separate variables, one available in the global
scope (outside the function) and one available in the local scope (inside the
function):

Example
The function will print the local x, and then the code will print the global x:
X = 300
def myfunc():
X = 200
print(x)

myfunc()

print(x)

200
300

Global Keyword

If you need to create a global variable, but are stuck in the local scope, you
can use the global keyword.

The global keyword makes the variable global.

Example

If you use the global keyword, the variable belongs to the global scope:

def myfunc():
global x
X = 300

myfunc()

print(x)
300

Also, use the global keyword if you want to make a change to a global
variable inside a function.

Example

To change the value of a global variable inside a function, refer to the
variable by using the global keyword:

X = 300

def myfunc():
global x
X = 200

myfunc()

print(x)
200

Python Lists

Python Collections (Arrays)
List

A list is a collection which is ordered and changeable. In Python lists are
written with square brackets.

Example

Create a List:

My list = ["apple", "banana", 75,156]
print(my_list)

Access ltems

You access the list items by referring to the index number:

Example

Print the second item of the list:

thislist = ["apple", "banana", "cherry"]
print(thislist[1])

Negative Indexing

Negative indexing means beginning from the end, -1 refers to the last item, -
2 refers to the second last item etc.

Example

Print the last item of the list:

thislist = ["apple"”, "banana", "cherry"]
print(thislist[-1])

Remember that the first item has index 0.

Change Item Value

To change the value of a specific item, refer to the index number:
Example

Change the second item:

thislist = ["apple", "banana", "cherry"]
thislist[1] = "blackcurrant”
print(thislist)

55 Mo 00l iy 25 joid A5 S o] A pdgined Js

59yl e lade i LS L4 uSanl 4l ()

oS oolaivl oK ol a5 ola Wi 5l sl cus
Add Items

To add an item to the end of the list, use the append() method:

Example

Using the append() method to append an item:

thislist = ["apple", "banana", "cherry"]
thislist.append(“orange")
print(thislist)

Remove |ltem

Example

The pop() method removes the specified index, (or the last item if index is
not specified):

thislist = ["apple", "banana", "cherry"]

thislist.pop(1)
print(thislist)

["apple', 'cherry']

